Note

A Note on Rational and Spline Approximation

Z. DITZIAN

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Communicated by Paul Nevai

Received October 28, 1988

In a recent technically involved but important paper (in my opinion), P. Petrushev [2] established a weak-type estimate of the rational approximation by the best spline approximation. This was done following the classical result of D. J. Newman [1] about approximation of the function |x| by rational functions. In the present note, we make some observations that yield a substantial improvement in the main result of [2]. The reader should note that this improvement also eluded Petrushev and Popov in their recent text on rational approximation [3, Chap. 8].

We define $R_n(f)_p$, the rate of rational approximation, by

$$R_n(f)_p = \inf\{\|f - R\|_{L_p(-\infty,\infty)} : R \in \mathcal{R}_n\},\tag{1}$$

where \mathscr{R}_n is the class of rational functions of degree *n*, i.e., quotients of the type P_n/Q_n , where both P_n and Q_n are polynomials of degree *n*. We define $S_m^k(f)_p$, the rate of spline approximation, by

$$S_{m}^{k}(f)_{p} = \inf\{\|f - \varphi\|_{L_{p}(-\infty,\infty)} : \varphi \in S(k;m)\},$$
(2)

where S(k; m) is the set of spline functions with m + 1 arbitrary knots x_i , $-\infty < x_0 < \cdots < x_m < \infty$; that is, $\varphi \in S(k; m)$ is a polynomial of degree k-1 in (x_i, x_{i+1}) , $(-\infty, x_0)$, and (x_m, ∞) . We observe that if φ is a polynomial (of any degree) in $(-\infty, x_0)$ or (x_m, ∞) and $f \in L_p(R)$, φ will be zero in those intervals. We further note that the question whether we have m + 1 free knots or m + 3 (including $\pm \infty$) is immaterial as the results discussed here are asymptotic.

One can prove the following result.

Z. DITZIAN

THEOREM 1. If $f \in L_p(-\infty, \infty)$, $1 \leq p < \infty$, $k \geq 1$, and $\alpha > 0$, then for $n \geq n_0$,

$$R_{n}(f)_{p} \leq C_{n}^{-\alpha} \sum_{\nu=1}^{n} \nu^{\alpha-1} S_{\nu}^{k}(f)_{p}, \qquad (3)$$

where $C = C(p, k, \alpha)$.

We note that, in Petrushev's paper, in the analogous result (Theorem 2.1, called there the main result) f is required to have [a, b] as support, in which case one has $S_v^k(f)_p = S_v^k(f, [a, b])$.

Proof. The main tool in the proof of Theorem 2.1 in [2] is Theorem 3.1 there, the proof of which occupies most of that paper. We observe that in the statement and proof of Theorem 3.1, the constant D of the estimate does not depend on the given interval [a, b]. Therefore, we may use Theorem 3.1 for different compact intervals at each step of the proof. Following Petrushev's proof, we may choose $\varphi_m \in S(k; m)$ such that, for the given $f(f \in L_p(-\infty, \infty))$,

$$\|f - \varphi_m\|_{L_p(-\infty,\infty)} \leq 2S_m^k(f)_p.$$
(4)

We observe that the support of φ_m is a finite interval, say, $[a_m, b_m]$. We further follow Petrushev to observe that $\varphi_{2^i} - \varphi_{2^{i-1}} \in S(k, 2^{i+1})$ and its support is in $[\min(a_{2^i}, a_{2^{i-1}}), \max(b_{2^i}, b_{2^{i-1}})]$.

Petrushev's result can now be applied to $\varphi_{2^i} - \varphi_{2^{i-1}}$ and the rest of the proof follows Petrushev's proof verbatim.

References

- 1. D. J. NEWMAN, Rational approximation to |x|, Michigan Math. J. 11 (1964), 11–14.
- 2. P. P. PETRUSHEV, Relations between rational and spline approximations in L_p metric, J. Approx. Theory 50 (1987), 141–159.
- 3. P. P. PETRUSHEV AND V. A. POPOV, "Rational Approximation of Real Functions," Cambridge Univ. Press, Cambridge, England, 1987.